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Separation of dissipation from diffusion
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Abstract. We study velocity correlations induced by diffusion and dissipation in a simple dissipative dy-
namical system. We observe that diffusion, as a result of time reversible microscopic processes, leads to
correlations with different spatial parity from those caused by dissipation, consisting of time irreversible
microscopic processes. The velocity correlations observed conflict with the “molecular chaos” assumption
of the Boltzmann equation. To account for the apparent correlation structures in our simple model system,
we propose that they indicate geometric distortion of the phase space.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.60.Cd Classical transport
– 02.40.-k Geometry, differential geometry, and topology

The second law of thermodynamics states that a system
left to itself will evolve towards a state with maximum
entropy, i.e. maximum randomness. We are familiar with
order due to interaction where, for example for systems in
equilibrium at certain temperature, different strength of
interaction among microscopic constituents leads to states
with different degrees of order – solid, liquid, or gas. In
this paper we study a different type of order, order purely
induced by diffusion and dissipation.

Nonequilibrium phenomena have long attracted much
research interest. The Boltzmann equation is probably
the most celebrated theory, yet its crucial assumption of
“molecular chaos” needs scrutiny before it can be applied
to specific systems, see for example [1]. Linear response
theory [2] also has wide applications in condensed mat-
ter physics. Some of recent studies include derivation of
Ohm’s Law for the periodic Lorentz gas [3], the connec-
tion between the smoothness of distribution function and
the number of degrees of freedom [4], finite and anomalous
thermal conductivity in 1d lattices [5] and directed current
in a 1d system [6], on nonequilibrium phase transition [7],
and on violation of the fluctuation-dissipation equality
[8], among others. However many theoretical works done
on nonequilibrium phenomena, to different extent, as-
sume certain mathematical forms as the starting point
of their investigations, which, though making the prob-
lems at hand mathematically attackable, may miss generic
properties of real physical systems because of the limita-
tion of the forms being used. On the other hand, with the
development of modern computer technology, numerical
experiments have become a very powerful tool. Here we
carry out our investigation by applying extensive numeri-
cal studies on a simple model system, and try to form an
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Fig. 1. A snapshot of the thin pipe system. The periodic side
walls are indicated by dashed lines. The coordinate system is
set up so that the x-axis is along the pipe.

understanding based on these results, without introducing
any ad hoc mathematical functional forms to characterize
the system.

We study a two-dimensional system of identical non-
interacting hard disks confined in a thin pipe (Fig. 1). The
width of the pipe is set so that two disks cannot pass each
other. Thus the motion of the disks is two dimensional,
while at the same time their sequence is preserved. The
two side walls are periodic and the two end walls are en-
ergy sources kept at the same temperature. For more de-
tails, see [9,10]. We use the simplest collision model – after
a collision between two disks, the normal relative velocity
changes sign, and decreases by a factor of the restitution
coefficient r, with 0 ≤ r ≤ 1. In the collision, the other
components of the velocities are unchanged. Thus the total
momentum is conserved while a portion of kinetic energy
is lost when r < 1. Simulations are for 80 disks and the
average spacing between two neighboring disks are much
larger than their radii. Statistical analysis is done for the
steady state. Different versions of one-dimensional diffu-
sion models are used in [5–7]. However, they rely on preset
diffusion equations as their starting point, while we are at-
tempting to find out the physical rules which will lead to
those equations. For a review of the current status for such
effort, see [11].
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Even with this simple model, we nevertheless limit
ourselves to situations close to equilibrium. Extensive
works have been done on such systems where linear
deviations from equilibrium are generally observed and
studied [2–4,12]. In our system, the details of the setting
are so clearly defined that we may attempt to obtain a
thorough understanding of the linearity, which then may
point to the direction for further study on situations far-
ther away from equilibrium.

One of the cornerstones of classical kinetics theories,
Liouville’s theorem states that the phase space volume
is a conserved quantity [12–14]. The importance of un-
derlying geometry of the phase space is especially stressed
in [15]. It is long recognized that energy dissipation makes
phase space tend to shrink [9]. We would like to investi-
gate the effects of this deviation from Liouville’s theorem
on the dynamics. The set up of the system is to create a
very small, yet uniform dissipation and look for its first
order effects. To stay away from disturbing the internal
dynamics, we put energy sources only at the end walls.
However, in this way we cannot have energy dissipation
without energy diffusion. There are two processes going
on in the system. First, energy dissipation due to inelastic
collisions, which to the first order is uniform. Second, en-
ergy diffusion, meaning energy conduction from the end
walls into the system, which at a certain location is pro-
portional to its distance to the center – at the center there
is no net diffusion in either direction due to symmetry. En-
ergy conduction also exists in a similar system with elas-
tic collisions between disks but two end walls at different
temperature, which we will treat later. The coexistence of
diffusion and dissipation is a general feature in dissipative
systems. We will demonstrate that they can be separated
due to different spatial parities they exhibit in our system.

We concentrate on correlations among x-components,
i.e. along the pipe, of velocities as an indicator of internal
orders. For a system at equilibrium, even when there are
interactions among its constituents, their velocities obey
Gaussian distribution and thus are uncorrelated. The in-
fluence of a particle’s motion on other particles’ velocities
is an indicator of order, and we quantify this order with
velocity correlations. Specifically, among other things, we
look at 〈ui|vj〉, meaning the conditional time average of
the x-component of velocity of the ith disk when vj is
given, where vj ≡ uj+1− uj. Of course, 〈ui〉 by itself van-
ishes because in the statistical steady state there is no
average drift in disks’ positions.

A somewhat more simplified quantity is the collision
average [10], denoted by 〈ui〉j , which is the average of ui
when the jth disk is colliding with the (j + 1)th disk. For
a system in equilibrium, this quantity vanishes when i is
neither j nor j + 1. However, in our system, it does not
vanish, but exhibits regular and interesting patterns. We
can plot 〈ui〉j as a function of i for several different j’s
– the resulting curves are confusing. But if we plot the
odd and even parity components of these curves, they are
easily identified as dissipation and diffusion, respectively.

The odd parity component, i.e. 〈ui − u2j+1−i〉j is for
dissipation – they overlap for different value of j’s (Fig. 2),
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Fig. 2. The odd parity component of 〈ui〉j. (∗) is for j = 40,
(�) for j = 35 and + for j = 25. The horizontal axis is for i− j
rescaled so that the closest boundary to j is shown at 40. Only
the positive half of i−j is shown. The system has 80 disks, r =
0.995 and the two end walls are set to the same temperature.
The vertical axis is without rescaling, demonstrating a uniform
correlation structure from uniform dissipation. The dashed line
is the corresponding rescaled curve for a system of 40 disks and
r = 0.99.

a clear signature for uniform dissipation. Apparently, dis-
sipation due to collision between two neighboring disks
has effects on the motions, not just of several disks close
to them, but of all the disks in the system. The even
parity component, i.e., 〈ui + u2j+1−i〉j is for diffusion—
they are proportional to the distance between j and the
center j = 40 (Fig. 3), a signature that they are caused
by energy conduction which is also proportional to this
distance.

For a further test, we run simulations for a system
with similar set up, but with elastic collisions and the two
end walls are kept at different temperatures so that no
dissipation, only diffusion occurs. The odd parity compo-
nent of the curves vanishes. And 〈ui−j〉j is independent
of j, corresponding to uniform diffusion. Also 〈ui〉j can be
rescaled to overlap with the even parity components from
the dissipative system (Fig. 3).

Heuristically, we can explain the different spatial pari-
ties by pointing out that dissipation consists of time ir-
reversible microscopic processes while diffusion consists
of only time reversible microscopic processes. In the sys-
tem with no dissipation but only constant diffusion, when
the jth disk is colliding with the (j + 1)th disk, let us
consider the following two operations: time reverse and
a spatial parity operation that reverses the direction of
x-axis and interchanges ith disk with (2j + 1 − i)th
disk. These two operations leave the energy flux un-
changed and connect two equally probable microscopic
states. Because ui in one state is the same as u2j+1−i
in the other state, we see the correlation curve from
diffusion has even spatial parity. The odd parity for the
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Fig. 3. The even parity component of 〈ui〉j. (∗) is for j = 35,
(�) for j = 30 and + for j = 25. The horizontal axis is for i− j
without rescaling. Only the positive half of i− j is shown. For
j = 35, the vertical coordination plotted is the real number
divided by 5 for the energy flux at j = 35 supplies dissipation
caused by 5 disks; for j = 30, it is the real number divided by
10; for j = 25, it is the real number divided by 15. These three
curves overlap, showing that the even mode is proportional to
the distance between j and the center. The solid line is the
corresponding rescaled curve for an elastic system with only
energy diffusion; its i−j value is rescaled. The inset is a similar
plot, with rescaled i − j as the horizontal axis, also shown as
the dashed line is a corresponding curve from a elastic system
with 40 disks.

correlation curve from dissipation is intuitively reasonable,
given dissipation causes the shrinkage of phase space vol-
ume.

The correlation curves from diffusion and dissipation
have following properties. They are independent of the
width of the pipe. The diffusion curves are not sensitive
as to where the boundaries are – curves for different col-
lision number j’s can overlap though the distances from
j’s to the boundaries are different. However, they are not
for local structures. The inset of Figure 3 shows the over-
lapping between diffusion curves for systems with 80 disks
(solid line) and 40 disks (dashed line), only after suitable
rescaling of i − j, which suggests they are roughly func-
tions of (i− j)/N . This is true also for dissipative curves,
which only overlap with one another after rescaling of i−j
(Fig. 2). These observations suggest that the structures
from dissipation and diffusion are global.

In the rest part of this paper, we describe our detailed
investigation of correlation curves for diffusion. For this
purpose, the simulations are for systems with elastic col-
lisions and different temperatures at two ends. We look
at the conditional time average of ui when vj and xj are
given, where xj is the spacing between jth and (j + 1)th
disks, and find (Fig. 4),

〈ui|vj , xj〉 = ci−j
[
(v2
j − 〈v2

j 〉) + f(xj − 〈xj〉)
]
, (1)
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Fig. 4. 〈u42|v40, x40〉. Though noisy, the surface plot shows a
linear dependence on x40 and a quadratic dependence on v40.

where f is a constant. This suggests that the effects of
vj on ui are independent of those from xj and we can
concentrate on just the velocities:

〈ui|vj〉 = ci−j(v2
j − 〈v2

j 〉). (2)

It is not difficult to understand this relation for i = j.
Let us consider 〈uj+uj+1|vj〉 as a function of vj . It cannot
be a constant because 〈(uj + uj+1)vj〉 = 〈u2

j+1 − u2
j〉 < 0

while 〈vj〉 = 0. It cannot have a linear term propor-
tional to vj either because when jth disk collides with
(j+1)st disk, vj changes sign while uj+uj+1 is unchanged
due to momentum conservation. Then the simplest form
〈uj + uj+1|vj〉 can have is a constant times v2

j − 〈v2
j 〉, as

in (2). Though conforming to quite general arguments, the
above observation is in contrast to the “molecular chaos”
assumption of the Boltzmann equation, the assumption
that makes the equation time irreversible.

It is counterintuitive that (2) does not vanish when i
is neither j nor j + 1. The evidence shown in Figure 3
implies a global structure yet depending on local inho-
mogeneity. We propose an approach based on geometric
distortion of the phase space. Let us think the phase space
as a Riemannian manifold with a metric g for the usual
(p, q) coordinate system [15]. The statistical probability
density ρ is a scalar. But the probability of the system in
the neighborhood of a point is proportional to ρ

√
g. One

approach would be to view the phase space as a simple
Euclidean manifold with a trivial g, then ρ has to account
for the interesting but puzzling correlation structure. An-
other approach, which we prefer, is to set ρ to a constant,
and view the correlation pattern as an indication of the
distortion of the phase space and thus a non-constant g.

In this approach, because the distortion of the phase
space, the variables ui’s are no longer statistical indepen-
dent and the corresponding coordinate system no longer
orthogonal. Let us assume a new set of independent
variables u′i’s deviates from the original set to the first
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Fig. 5. Coefficients a(i− j) and b(i− j) in (4). Solid line is for
a and dashed line for b. The first data point of a is not shown,
which at about −0.01. The dotted line is a− 2.5b and is close
to 0.

order:
u′i = ui + εF (Γ ), (3)

where ε is proportional to the small inhomogeneity, and Γ
denotes the set of ui’s. Because 〈u′i|vj〉 = 0 by definition,
we have 〈ui|vj〉 = −ε〈F (Γ )|vj〉0. The subscript 0 in the
last expression indicates that only the zeroth order is
needed, which can be extracted from numerical data.
From the somewhat noisy data, we find (3) takes the form,

u′i = ui +
N−1∑
j=1

ai,jv
2
j +

N−2∑
j=1

bi,jvj−1vj + C, (4)

where C is a constant that keeps 〈u′i〉 = 0. Let us for the
moment ignore boundaries and write the coefficients as
a(i− j) and b(i− j) respectively. b(i− j) can be obtained
by noticing:
〈ui|vj−1, vj〉 − 〈ui|vj−1,−vj〉 = −2b(i− j)vj−1vj . (5)

Then in turn a(i − j) can be obtained by substituting
b(i− j) into

〈ui|vj〉 =
[
−a(i− j)− 1

4
a(i− (j − 1))− 1

4
a(i− (j + 1))

+
1
2
b(i− j) +

1
2
b(i− (j + 1))

]
v2
j . (6)

We use numerical data from 〈ui|v40, v41〉 to extract values
of a(i− j) and b(i− j) and plot the result in Figure 5.

We can assume the metric under the coordinate sys-
tem u′i diagonal. Then by the relation between two co-
ordinate systems (3), we can obtain the metric g under
the original coordinate system of ui’s. Because the metric
g is connected to the strain tensor [16], we see how the
correlations indicate the distortion of the phase space.

Because we study the behavior of the system very
close to equilibrium, we expect a smooth distribution func-
tion in the phase space, agreeing with the approach of

Tuckerman et al. [15]. However, when the inhomogeneity
is stronger [17], there is likely to be a transition in the dy-
namics and the distribution function becomes fractal as
suggested by Hoover, et al.

In this paper, we present numerical results of veloc-
ity correlations in a simple model of nonequilibrium sys-
tem and propose to interpret the observation as an indica-
tion of geometric distortion of the phase space. However,
most theoretical reasonings in the paper are heuristic ar-
guments. We did not attempt to formulate a fundamental
theoretical framework because we feel further data col-
lecting, and more importantly, different, more general set-
ting of the system should be tested before a better un-
derstanding can be reached. A simple extension would be
the testing of a similar system, but with two dimensional
close-packed disks.
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